Discipline: Actual problems of chemistry of polymer composites

Lecture 7.

Theme: Theoretical Basis for Obtaining Polymer Composites. Interface and Interphase Bond. Wettability as Main Criteria for Obtaining Polymer Composites

Objective:

To understand the theoretical principles of polymer composite formation, focusing on interface and interphase bonding, and to examine wettability as a critical factor in achieving effective composite performance.

Key Questions:

- 1. What is the role of the interface in polymer composites?
- 2. What is the interphase region and how does it affect composite properties?
- 3. How does wettability influence the interaction between matrix and reinforcement?
- 4. What are the main factors governing adhesion in polymer composites?
- 5. How can interface and interphase properties be optimized?

Lecture Content:

- Theoretical Basis of Polymer Composites Formation:
 - o Polymer composites consist of reinforcements embedded in a polymer matrix, forming a material with improved mechanical, thermal, and functional properties.
 - The quality of the bond between matrix and reinforcement strongly determines composite performance.
- Interface and Interphase Bond:
 - o **Interface:** The surface contact region between the reinforcement and the polymer matrix.
 - Responsible for **stress transfer** from the matrix to the reinforcement.
 - Poor interface leads to weak points and reduced mechanical performance.
 - o **Interphase:** A transition layer surrounding the reinforcement where the polymer properties differ from the bulk matrix.

- Its thickness and properties affect adhesion, toughness, and durability.
- Formed due to physical adsorption, chemical bonding, or entanglement of polymer chains.

• Wettability and Its Importance:

- Wettability is the ability of a liquid polymer matrix to spread over and adhere to the reinforcement surface.
- High wettability ensures **good contact**, **improved adhesion**, **and uniform stress distribution**.
- Factors influencing wettability:
 - Surface energy of reinforcement
 - Surface roughness
 - Surface chemistry (hydrophilic or hydrophobic properties)
 - Temperature and viscosity of the polymer melt or solution

• Criteria for Effective Composite Formation:

- o Optimal interface and interphase properties for **efficient stress** transfer.
- Adequate wettability to ensure **complete impregnation of fibers or particles**.
- Surface treatments (coupling agents, plasma treatment, chemical modification) to improve adhesion.

Practical Considerations:

- Poor wettability leads to voids, debonding, and reduced mechanical strength.
- o Interphase properties can be engineered by surface modification of reinforcements or matrix additives.
- The combination of interface strength, interphase thickness, and wettability determines composite durability, toughness, and thermal stability.

• Applications:

- Aerospace and automotive composites require strong interphase bonding for high performance.
- Structural polymer composites rely on optimized wettability and interface adhesion.
- o Nanocomposites emphasize interphase engineering due to the high surface area of nanoparticles.

Key Short Theses:

- 1. The **interface** is the immediate contact region between reinforcement and matrix, crucial for stress transfer.
- 2. The **interphase** is a transition layer with properties different from the bulk matrix, affecting toughness and adhesion.

- 3. Wettability is a key factor for effective polymer-reinforcement bonding.
- 4. High surface energy, proper surface chemistry, and controlled processing improve wettability.
- 5. Surface treatments or coupling agents enhance **interface and interphase adhesion**, leading to improved composite performance.
- 6. Optimizing interface, interphase, and wettability is essential for **mechanical** strength, durability, and functional properties.
- 7. Poor interface or insufficient wettability leads to voids, delamination, and reduced composite quality.

Control Questions:

- 1. What is the difference between the interface and interphase in polymer composites?
- 2. How does interphase thickness affect composite properties?
- 3. Why is wettability critical in obtaining high-performance polymer composites?
- 4. Which factors influence wettability of polymer matrices on reinforcements?
- 5. How can surface treatments improve interface and interphase bonding?
- 6. What are the consequences of poor adhesion and wettability in polymer composites?

Recommended references

Main literature:

- 1. Introduction to Polymer Science and Chemistry: A Problem-Solving Approach, Second Edition 2nd Edition / by Manas Chanda, CRC Press; 2nd edition (January 11, 2013)
- 2. Polymer Chemistry 2nd Edition / by Paul C. Hiemenz, Timothy P. Lodge, CRC Press; 2nd edition (February 15, 2007)
- 3. Semchikov Yu.D. High-molecular compounds: Textbook for universities. Moscow: Academy, 2003, 368.
- 4. S. Thomas, K. Joseph, S.K. Malhotra, K. Goda, M.S. Sreekala. Polymer composites. Wiley-VCH, 2012. 829 p.
- 5. Irmukhametova G.S. Fundamentals of polymer composite materials technology: textbook for universities; Al-Farabi Kazakh National University. Almaty: Kazakh University, 2016. 175 p.

Additional literature:

- 1. Polymer composite materials (part 1): a tutorial / L.I. Bondaletova, V.G. Bondaletov. Tomsk: Publishing house of Tomsk Polytechnic University, 2013. 118 p.
- 2. Polymer composite materials: structure, properties, technology. Edited by Berlin A.A. St. Petersburg, Publishing house "Profession", 2008. 560 p.
- 3. Polymer composite materials: structure, properties, technology: a tutorial / M.L. Kerber et al.; under the general editorship of A.A. Berlin. St. Petersburg: Profession, 2009.- 556, [4] p.
- 4. Bataev, A.A. Composite materials. Structure, production, application: a tutorial. manual / A. A. Bataev, V. A. Bataev. M.: Logos, 2006. 397, [3] p. (New University Library).